Volatility in mRNA secondary structure as a design principle for antisense
نویسندگان
چکیده
Designing effective antisense sequences is a formidable problem. A method for predicting efficacious antisense holds the potential to provide fundamental insight into this biophysical process. More practically, such an understanding increases the chance of successful antisense design as well as saving considerable time, money and labor. The secondary structure of an mRNA molecule is believed to be in a constant state of flux, sampling several different suboptimal states. We hypothesized that particularly volatile regions might provide better accessibility for antisense targeting. A computational framework, GenAVERT was developed to evaluate this hypothesis. GenAVERT used UNAFold and RNAforester to generate and compare the predicted suboptimal structures of mRNA sequences. Subsequent analysis revealed regions that were particularly volatile in terms of intramolecular hydrogen bonding, and thus potentially superior antisense targets due to their high accessibility. Several mRNA sequences with known natural antisense target sites as well as artificial antisense target sites were evaluated. Upon comparison, antisense sequences predicted based upon the volatility hypothesis closely matched those of the naturally occurring antisense, as well as those artificial target sites that provided efficient down-regulation. These results suggest that this strategy may provide a powerful new approach to antisense design.
منابع مشابه
Optimization of antisense drug design against conservative local motif in simulant secondary structures of HER-2 mRNA and QSAR analysis.
AIM To study the role of mRNA secondary structure stability in antisense drug design and obtain better antisense candidates against neu/HER-2/erbB-2 mRNA than previous report. METHODS Program RNAstructure was utilized to simulate the secondary structures of HER-2 mRNA. Then 21 antisense phosphorothioate oligodeoxynucleotides (S-ODN) targeting different parts of secondary structural motif were...
متن کاملStatistical prediction of single-stranded regions in RNA secondary structure and application to predicting effective antisense target sites and beyond.
Single-stranded regions in RNA secondary structure are important for RNA-RNA and RNA-protein interactions. We present a probability profile approach for the prediction of these regions based on a statistical algorithm for sampling RNA secondary structures. For the prediction of phylogenetically-determined single-stranded regions in secondary structures of representative RNA sequences, the proba...
متن کاملTargetFinder: a software for antisense oligonucleotide target site selection based on MAST and secondary structures of target mRNA
UNLABELLED TargetFinder is a PC/Windows program for interactive effective antisense oligonucleotide (AO) selection based on mRNA accessible site tagging (MAST) and secondary structures of target mRNA. To make MAST result intuitive, both the alignment result and tag frequency profile is illustrated. As theoretical reference, secondary structure and single strand probability profile of target mRN...
متن کاملEffects of ackA, pta and poxB inhibition by antisense RNA on acetate excretion and recombinant beta interferon expression in Escherichia coli
Introduction: Escherichia coli (E.coli) is one of the most widely used hosts for the production of recombinant proteins. The main problem in getting high product yields and productivity is the accumulation of acetic acid (acetate) as an unwanted metabolic by-product. In this study, an antisense-based strategy as a metabolic engineering approach was employed to hamper the acetate excretion probl...
متن کاملDesigning and analyzing the structure of Tat-BoNT/A(1-448) fusion protein: An in silico approach
Clostridium botulinum type A (BoNT/A) produces a neurotoxin recently found to be useful as an injectable drug for the treatment of abnormal muscle contractions. The catalytic domain of this toxin which is responsible for the main toxin activity is a zinc metalloprotease that inhibits the release of neurotransmitter mediators in neuromuscular junctions. A cell penetrating cationic peptide, Tat, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 41 شماره
صفحات -
تاریخ انتشار 2013